Power (physics)
Common symbols  P 

SI unit  watt 
Classical mechanics 

Core topics 
</td> </tr> 
</td> </tr> 
In physics, power (symbol: P) is defined as the amount of energy consumed per unit time. In the MKS system, the unit of power is the joule per second (J/s), known as the watt (in honor of James Watt, the eighteenthcentury developer of the steam engine). For example, the rate at which a light bulb converts electrical energy into heat and light is measured in watts—the more wattage, the more power, or equivalently the more electrical energy is used per unit time.^{[1]}^{[2]} Energy transfer can be used to do work, so power is also the rate at which this work is performed. The same amount of work is done when carrying a load up a flight of stairs whether the person carrying it walks or runs, but more power is expended during the running because the work is done in a shorter amount of time. The output power of an electric motor is the product of the torque the motor generates and the angular velocity of its output shaft. The power expended to move a vehicle is the product of the traction force of the wheels and the velocity of the vehicle. The integral of power over time defines the work done. Because this integral depends on the trajectory of the point of application of the force and torque, this calculation of work is said to be path dependent. ContentsUnitsThe dimension of power is energy divided by time. The SI unit of power is the watt (W), which is equal to one joule per second. Other units of power include ergs per second (erg/s), horsepower (hp), metric horsepower (Pferdestärke (PS) or cheval vapeur, CV), and footpounds per minute. One horsepower is equivalent to 33,000 footpounds per minute, or the power required to lift 550 pounds by one foot in one second, and is equivalent to about 746 watts. Other units include dBm, a relative logarithmic measure with 1 milliwatt as reference; (food) calories per hour (often referred to as kilocalories per hour); Btu per hour (Btu/h); and tons of refrigeration (12,000 Btu/h). Average powerAs a simple example, burning a kilogram of coal releases much more energy than does detonating a kilogram of TNT,^{[3]} but because the TNT reaction releases energy much more quickly, it delivers far more power than the coal. If ΔW is the amount of work performed during a period of time of duration Δt, the average power P_{avg} over that period is given by the formula It is the average amount of work done or energy converted per unit of time. The average power is often simply called "power" when the context makes it clear. The instantaneous power is then the limiting value of the average power as the time interval Δt approaches zero. In the case of constant power P, the amount of work performed during a period of duration T is given by: In the context of energy conversion, it is more customary to use the symbol E rather than W. Mechanical powerPower in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work. In mechanics, the work done by a force F on an object that travels along a curve C is given by the line integral: Which, when the path is a straight line, can also be written as: where x defines the path C and v is the velocity along this path. Applying the gradient theorem to the first equation (and remembering that force is the negative of the gradient of the potential energy) yields: Where A and B are the beginning and end of the path along which the work was done. Thus the power developed along a path is the time derivative of this: In one dimension and with a constant velocity, this can be simplified to: In rotational systems, power is the product of the torque τ and angular velocity ω, where ω measured in radians per second. In fluid power systems such as hydraulic actuators, power is given by where p is pressure in pascals, or N/m^{2} and Q is volumetric flow rate in m^{3}/s in SI units. Mechanical advantageIf a mechanical system has no losses then the input power must equal the output power. This provides a simple formula for the mechanical advantage of the system. Let the input power to a device be a force F_{A} acting on a point that moves with velocity v_{A} and the output power be a force F_{B} acts on a point that moves with velocity v_{B}. If there are no losses in the system, then and the mechanical advantage of the system is given by A similar relationship is obtained for rotating systems, where T_{A} and ω_{A} are the torque and angular velocity of the input and T_{B} and ω_{B} are the torque and angular velocity of the output. If there are no losses in the system, then which yields the mechanical advantage These relations are important because they define the maximum performance of a device in terms of velocity ratios determined by its physical dimensions. See for example gear ratios. Power in opticsIn optics, or radiometry, the term power sometimes refers to radiant flux, the average rate of energy transport by electromagnetic radiation, measured in watts. In other contexts, it refers to optical power, the ability of a lens or other optical device to focus light. It is measured in diopters (inverse meters), and equals the inverse of the focal length of the optical device. Electrical powerThe instantaneous electrical power P delivered to a component is given by where
If the component is a resistor with timeinvariant voltage to current ratio, then: where is the resistance, measured in ohms. Peak power and duty cycleIn the case of a periodic signal of period , like a train of identical pulses, the instantaneous power is also a periodic function of period . The peak power is simply defined by:
The peak power is not always readily measurable, however, and the measurement of the average power is more commonly performed by an instrument. If one defines the energy per pulse as: then the average power is:
One may define the pulse length such that so that the ratios are equal. These ratios are called the duty cycle of the pulse train. See also
References

</td></tr></table>